If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+t-300=0
a = 1; b = 1; c = -300;
Δ = b2-4ac
Δ = 12-4·1·(-300)
Δ = 1201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1201}}{2*1}=\frac{-1-\sqrt{1201}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1201}}{2*1}=\frac{-1+\sqrt{1201}}{2} $
| 4.2/3.6=x/20 | | x+.06x=106000 | | -6x+4=3-6x | | t^2+t+300=0 | | 87=-2(4+8k)-1 | | x-(13-4x)/4=1 | | 70=5.5(1)+b | | 5=z−4−3.z= | | 5=z/−4−3.z= | | -(3x)^2+6=-3 | | (y-3)^2-44=0 | | h+65=2.h= | | 3(2f+1)=15 | | R=42-0.7t | | 5v+2v-7v-3=24 | | 4(x-4)+7x=-104 | | 3x+2x-6=17 | | 2(8x+8)=2(5x+4) | | 104=-8(k-7) | | 2(8x+8=2(5x+4) | | 19=8r−5 | | 5/7=20/l | | 2x^2−216=0 | | 5x-2((x+1)=10 | | 2(x+8)=2(5x+4) | | 2y(9-4)^2=-350 | | 5y^2+100=0 | | 4x+2x-6=17 | | x+4/8=2/x-2 | | 12w+11=7w-9 | | X+8/2=x+4/4 | | 8s+39(12-7s)=49 |